

Design Digitaler Schaltkreise

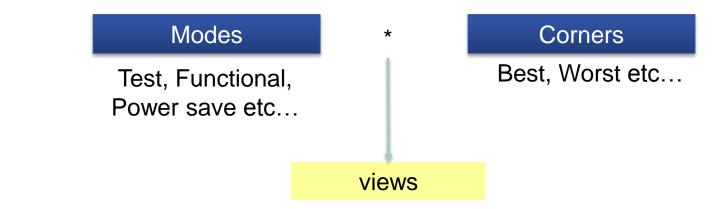
Place and route 2

Asic and Detector Lab - IPE

Prof. Ivan Peric <u>ivan.peric@kit.edu</u> Richard Leys <u>richard.leys@kit.edu</u>

Ilias: https://ilias.studium.kit.edu/goto_produktiv_crs_430424.html

Lecture Goal



- Understand the basics of Timing Configuration
- Understand the concept of Clock Synthesis
- See last routing and design completion steps

Timing Setup: MMMC

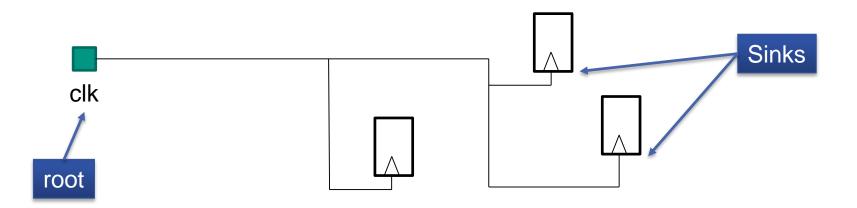
- Multi-Mode Multi-Corner
- Multi-Mode:
 - All configurations in which the ASIC can run, ex: Test mode, Functional
- Corners: Timing Characterisation of libraries for different conditions:
 - Voltages
 - Temperature
 - Best Case, Worst Case
- Views: Modes + Corners
 - Slow Corners: Fix Setup
 - Fast Corners: Fix Hold

Timing Setup: On Chip Variation

- For slower technology nodes (<65nm) On-Chip Variation (OCV) become more and more dominant:</p>
 - Two adjacent transistors on the die are different.
 - The smaller the technology, the disparate it gets.
- OCV also affects RC extraction for routing lines
- OCV adds up as an extraction corner
 - Worsens the runtimes
- Setup challenges: Technology specific, not always easy to have correct values to setup the tool with.
- Difficulty for us: very much process-related, we are not process experts
- In an industry context: don't forget about it!

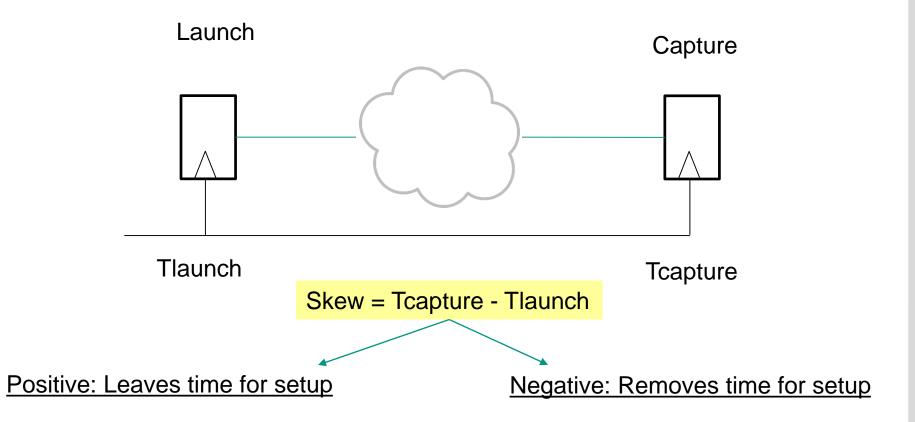
Timing Fixes during implementation

- In Cadence tools, the <u>optDesign</u> command is used to reclaim timing after each phase:
 - Before Clock Tree Synthesis
 - Before Routing
 - After Routing
- Timing Fixes are done for Setup and Hold separately
- Fixes may alter manufacturing rules (DRC)
- DRC may alter timing:
 - Always re-optimise the design along the implementation flow
- Ignore this right now:
 - No Specific pattern:
 - See what he tool does and re-call design optimisation with different options to fix alterations
 - Runtimes go higher, not a good idea for the lab work as well

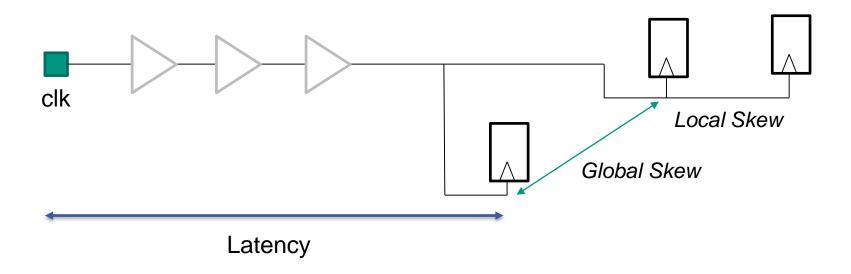

Where are we?

- Floorplaning is done and set
- Input Outputs are set
- Power structures have been planned
- Standard Cells are placed
- Remains:
 - Distribute the clock
 - Route the design
 - Respect Design Rules for manufacturing
 - Keep timing acceptable
 - Output design data for DRC/LVS and production

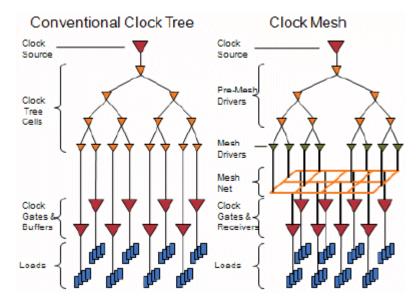
Clock Tree Synthesis (CTS)


- Per-Clock domain:
 - 1 Clock Source
 - Many Sinks
- Goal: Clock available at all flip-flops at the same time
- Clock net is very constraining:
 - Toggles a lot: Power consumption
 - Can toggle fast: Signal Integrity aggressor
 - Long wires: Difficult to drive and balance

CTS: Clock Skew

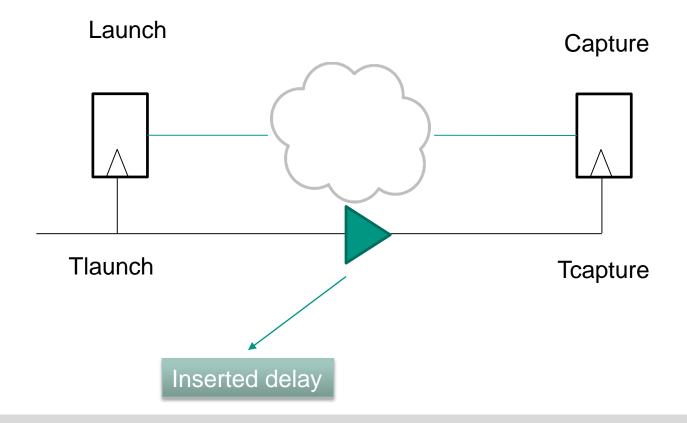

- Clock arrives at Launch and Capture ports
- Positive and Negative Skew are possible

CTS: Semantics


- Latency is used to describe the time to reach the sinks
- Skew is defined in: Local and Global categories
 - Local for related flip-flops
 - Global for unrelated flip-flops

CTS: Achieving Zero-Skew

- There are two types of clock routing:
 - Clock Tree: The commonly used path
 - Clock mesh: A grid for the clock
 - Better Skew, but higher resource usage
- Main Goal: No skew
 - All flip-flops get the clock at the same time
- Zero-Skew clock tree algorithms are available and researched
 - Not the focus here
- At Lower technology nodes:
 - On-Chip Variation influence increases (OCV)
 - Clock meshes seem to have a better tolerance to OCV
- Rule: Understand what the tool can do, and the advantages for the specific technology and chip size

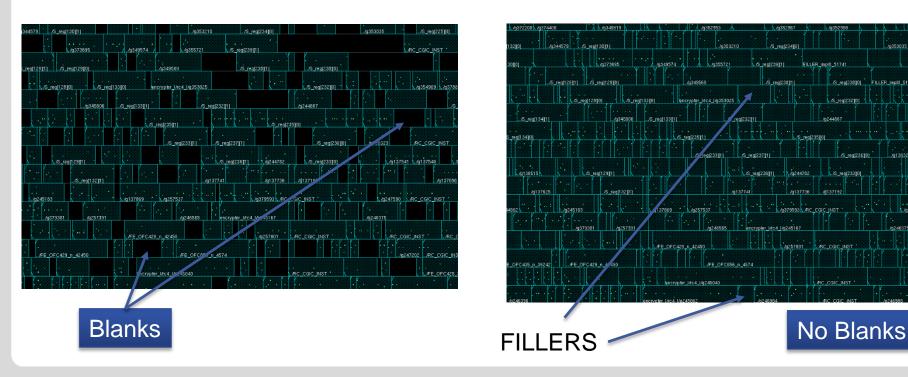


http://www.design-reuse.com/articles/21019/clock-mesh-benefits-analysis.html

CTS: Useful Skew example

- Feature example: The tool can try to use positive/negative skew to improve setup or hold timing
- Use with precaution, first try to meet timing with no fancy feature

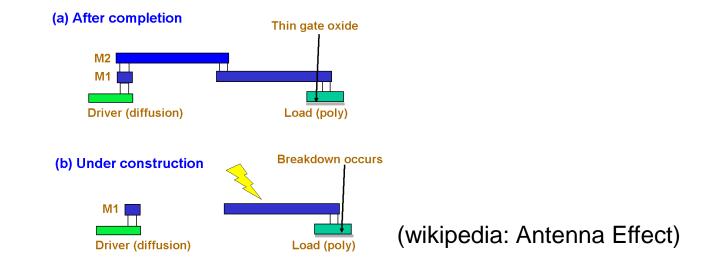
CTS: Report example



clk		
Path 1: VIOLATED Setup Check with Pin encrypter_I/rc4_I/K_reg Endpoint: encrypter_I/rc4_I/K_reg[2]/D (^) checked with T Beginpoint: encrypter_I/rc4_I/i_reg[0]/Q (v) triggered by Path Groups: {reg2reg} Analysis View: functional_worstHT Other End Arrival Time 0.735 - Setup 0.013 + Phase Shift 2.500 - Uncertainty 0.150 = Required Time 3.072 - Arrival Time 3.303 = Slack Time -0.232 Clock Rise Edge 0.000 = Beginpoint Arrival Time 0.000 Timing Path:	eg[2]/CM leading	edge of 'clk'
Pin	Edge 	Net
<pre>clk_in/DI clk_int_Ll_IO/A clk_int_L2_IO/A clk_int_L2_IO/Z clk_int_L3_IO/A clk_int_L4_I3/A clk_int_L4_I3/Z encrypter_I/rc4_I/RC_CG_HIER_INST58/RC_CGIC_INST/C K encrypter_I/rc4_I/RC_CG_HIER_INST58/RC_CGIC_INST/G CK encrypter_I/rc4_I/i_reg[0]/CK encrypter_I/rc4_I/i_reg[0]/Q encrypter_I/rc4_I/FE_OCPC1786_n_31313/A encrypter_I/rc4_I/FE_OCPC1786_n_31313/A encrypter_I/rc4_I/FE_OFC385_n_31313/A encrypter_I/rc4_I/FE_OFC385_n_31313/A</pre>	· · · · · · · · · · · · · · · · · · ·	<pre>clk_int clk_int clk_int_L1_N0 clk_int_L1_N0 clk_int_L2_N0 clk_int_L2_N0 clk_int_L3_N0 clk_int_L3_N0 clk_int_L4_N3 clk_int_L4_N3 encrypter_I/rc4_I/rc_gclk_180681 encrypter_I/rc4_I/rc_gclk_180681 encrypter_I/rc4_I/n_31313 encrypter_I/rc4_I/FE_0CPN1786_n_31313 encrypter_I/rc4_I/FE_0CPN1786_n_31313 encrypter_I/rc4_I/FE_0CPN1786_n_31313 encrypter_I/rc4_I/FE_0CPN1786_n_31313</pre>

Routing: Global Overview

- Finish All data paths routing with accurate extraction
 - Fill the core area blanks with filler cells (see technology documentation for cell names)
 - Perform Global and detail routing
 - Extraction optimises RC and signal integrity quality

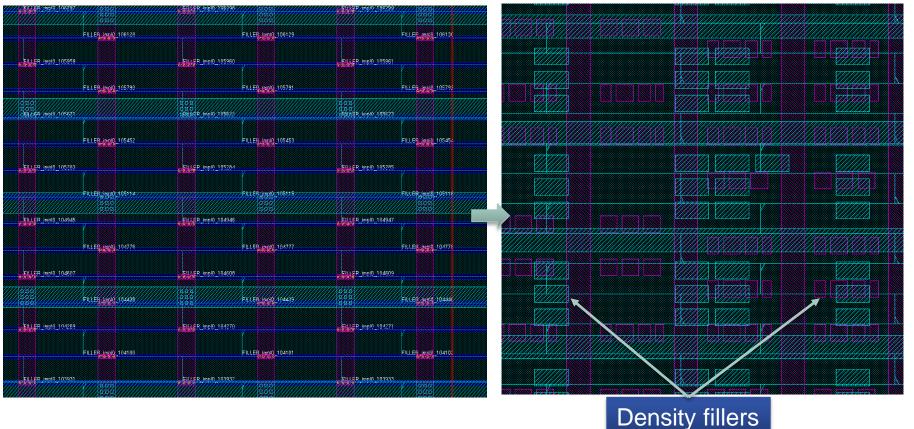


1024

Routing: Antenna Fixing

- Antenna is a risk during manufacturing process
 - A discharge may occur through routed floating nets to transistor gates
 - IC would not be working if it happens
- Antenna Cells are inserted to ensure discharge occurs into substrate
- Routing might also leverage antenna fixing, so the router may route based on timing and Antenna constraints

Karlsruhe Institute of Technology


Prepare for Manufacturing

- Final Steps before manufacturing:
 - Verify and fix DRC
 - Retime/Refix design
- Perform Metal Filling to fix density DRC
 - Reverify/Retime/Refix design
- Write out a GDS file
- Perform Layout versus Schematic
 - Refix design
- Good to go!

Metal Filling

- Not always done in the tool, other tools can be used
- Sometimes the Foundry access service provider does metal filling (ex: Multi Project Wafer funs)

End Slide